

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set and Tutorial 13

Semester/Year:2/2015Course Title:Basic Electrical EngineeringInstructor:Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)Course Web Site:http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: Not Due

Instructions

- 1. All <u>phasor</u> should be answered in polar form where the magnitude is positive and the phase is between -180° and 180° .
- 2. All <u>sinusoid</u> should be answered in the cosine form where the amplitude is positive and the phase is between -180° and 180° .

Questions

1. [Alexander and Sadiku, 2009, Q11.12] For the circuit shown in Figure 1, determine the load impedance Z_L for maximum power transfer (to Z_L). Calculate the maximum power absorbed by the load.

Figure 1

ECS203 2015 HW13

2. [F2010] Consider the circuit in Figure 2 below.

Figure 2

Suppose

$$v_s(t) = 7\cos\left(200t + 30^\circ\right) \,\mathrm{V},$$

a. Determine the **load impedance** Z_L for maximum power transfer (to Z_L).

b. How can you build the optimal Z_L which you got in part (a) from a combination of resistor(s)/inductor(s)/capacitor(s)? **Draw and explain** your answer. Indicate the values of each component (in $\Omega/H/F$).

c. Calculate the maximum power absorbed by the load Z_L.

3. [Alexander and Sadiku, 2009, Q7.8] For the circuit in Figure 3 if $v(t) = 10e^{-4t} V$ and $i(t) = 0.2e^{-4t} A$, t > 0

Figure 3

(a) Find R and C.

- (b) Determine the time constant τ .
- (c) Calculate the initial energy in the capacitor.

(d) Obtain the time it takes to dissipate 50 percent of the initial energy.

4. [Alexander and Sadiku, 2009, Q7.3] Determine the time constant for the circuit in Figure 4.

Figure 4: [Alexander and Sadiku, 2009, Figure 7.83]

5. [Alexander and Sadiku, 2009, Q7.2] Determine the time constant for the circuit in Figure 5.

Figure 5

- 6. [Alexander and Sadiku, 2009, Q7.10] Consider the circuit in Figure 6.
 - (a) Find $v_o(t)$ for t > 0.
 - (b) Determine the time necessary for the capacitor voltage to decay to one-third of its value at t = 0.

Figure 6

7. [Alexander and Sadiku, 2009, Q7.7] Assuming that the switch in Figure 7 has been in position A for a long time and is moved to position B at t = 0, find $v_0(t)$ for $t \ge 0$.

Figure 7

_____ID: ____

Figure 8

Let

 V_{s1} = 5 V, V_{s2} = 0 V, R_1 = 6 Ω , R_2 = 3 Ω , and C = 10 F.

(a) (3 pt) Find $v(0^{-})$. Do not forget to justify your answer.

- (b) (1 pt) Find v(0). Do not forget to justify your answer.
- (c) (4 pt) Find v(t) for t > 0.

9. [F2010] Consider the circuit in Figure 9 below. Assume the switch has been at position 1 for a long time and moves to position 2 **at t = 5 sec.**

Figure 9

Let

$$V_{s1}$$
 = 16 V, V_{s2} = 8 V, R_1 = 3 Ω , R_2 = 5 Ω , and C = 8 F.

(a) (3 pt) Find v(0).

(b) (2 pt) Find v(5).

(c) (4 pt) Find v(t).

(d) (1 pt) Evaluate v(t) at t = 7.

10. [Alexander and Sadiku, 2009, Q7.40] Find the capacitor voltage **for** *t* < **0** and *t* > **0** for each of the circuits in Figure 10.

Figure 10

11. [Alexander and Sadiku, 2009, Q7.42]

Figure 11

(a) If the switch in Figure 11 has been open for a long time and is closed at t = 0, find $v_o(t)$.

(b) Suppose, instead, that the switch has been closed for a long time and is opened at t = 0. (Note that this is not shown in the figure.) Find $v_o(t)$.

12. [Alexander and Sadiku, 2009, Q7.44] The switch in Figure 12 has been in position a for a long time. At t = 0, it moves to position b. Calculate i(t) for all t > 0.

Figure 12

$$V_s$$
 = 10 V, R_1 = 30 k Ω , R_2 = 10 k Ω , and C = 4 $\mu F.$

Assume that the switch has been in position 1 during time t < 0. Then, during time t \ge 0 the switch changes its position five times: at t₁ = 0 ms, t₂ = 25 ms, t₃ = 50 ms, t₄ = 75 ms, t₅ = 100 ms.

(At time t_1 , the switch changes to position 2. At time t_2 , the switch changes back to position 1. At time t_3 , the switch changes again to position 2....)

<u>**Plot**</u> the voltage v(t) for time t > 0.

Hint: You should have $v(t_5) \approx 4.59$ V.