\qquad ID: \qquad

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set and Tutorial 13

Semester/Year: 2/2015
Course Title: Basic Electrical Engineering
Instructor: Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: Not Due

Instructions

1. All phasor should be answered in polar form where the magnitude is positive and the phase is between -180° and 180°.
2. All sinusoid should be answered in the cosine form where the amplitude is positive and the phase is between -180° and 180°.

Questions

\qquad

1. [Alexander and Sadiku, 2009, Q11.12] For the circuit shown in Figure 1, determine the load impedance Z_{L} for maximum power transfer (to Z_{L}). Calculate the maximum power absorbed by the load.

Figure 1
\qquad ID: \qquad
2. [F2010] Consider the circuit in Figure 2 below.

Figure 2
Suppose

$$
v_{s}(t)=7 \cos \left(200 t+30^{\circ}\right) \mathrm{V} \text {, }
$$

a. Determine the load impedance Z_{L} for maximum power transfer (to Z_{L}).
b. How can you build the optimal Z_{L} which you got in part (a) from a combination of resistor(s)/inductor(s)/capacitor(s)? Draw and explain your answer. Indicate the values of each component (in $\Omega / H / F$).
c. Calculate the maximum power absorbed by the load Z_{L}.

ID: \qquad
3. [Alexander and Sadiku, 2009, Q7.8] For the circuit in Figure 3 if $v(t)=10 \mathrm{e}^{-4 t} \mathrm{~V}$ and $i(t)=0.2 \mathrm{e}^{-4 \mathrm{t}} \mathrm{A}, t>0$

Figure 3
(a) Find R and C.
(b) Determine the time constant τ.
(c) Calculate the initial energy in the capacitor.
(d) Obtain the time it takes to dissipate 50 percent of the initial energy.
\qquad ID: \qquad
4. [Alexander and Sadiku, 2009, Q7.3] Determine the time constant for the circuit in Figure 4.

Figure 4: [Alexander and Sadiku, 2009, Figure 7.83]
5. [Alexander and Sadiku, 2009, Q7.2] Determine the time constant for the circuit in Figure 5.

Figure 5

ID: \qquad
6. [Alexander and Sadiku, 2009, Q7.10] Consider the circuit in Figure 6.
(a) Find $v_{0}(t)$ for $t>0$.
(b) Determine the time necessary for the capacitor voltage to decay to one-third of its value at $t=0$.

Figure 6
\qquad ID: \qquad
7. [Alexander and Sadiku, 2009, Q7.7] Assuming that the switch in Figure 7 has been in position A for a long time and is moved to position B at $t=0$, find $\mathrm{v}_{\mathrm{o}}(t)$ for $\mathrm{t} \geq 0$.

Figure 7
\qquad ID: \qquad
8. [F2010] Consider the circuit in Figure 8 below. Assume the switch has been at position 1 for a long time and moves to position 2 at $t=0$ sec.

Figure 8

Let

$$
\mathrm{V}_{\mathrm{s} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{s} 2}=0 \mathrm{~V}, \mathrm{R}_{1}=6 \Omega, \mathrm{R}_{2}=3 \Omega, \text { and } \mathrm{C}=10 \mathrm{~F} .
$$

(a) (3 pt) Find $v\left(0^{-}\right)$. Do not forget to justify your answer.
(b) (1 pt) Find $v(0)$. Do not forget to justify your answer.
(c) (4 pt) Find $v(t)$ for $t>0$.
\qquad ID: \qquad
9. [F2010] Consider the circuit in Figure 9 below. Assume the switch has been at position 1 for a long time and moves to position 2 at $\mathbf{t}=5 \mathbf{s e c}$.

Figure 9

Let

$$
\mathrm{V}_{\mathrm{s} 1}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{s} 2}=8 \mathrm{~V}, \mathrm{R}_{1}=3 \Omega, \mathrm{R}_{2}=5 \Omega \text {, and } \mathrm{C}=8 \mathrm{~F} .
$$

(a) (3 pt) Find $v(0)$.
(b) (2 pt) Find $v(5)$.
(c) (4 pt) Find $v(t)$.
(d) (1 pt) Evaluate $v(t)$ at $t=7$.
\qquad ID: \qquad
10. [Alexander and Sadiku, 2009, Q7.40] Find the capacitor voltage for $\boldsymbol{t}<\mathbf{0}$ and $\boldsymbol{t}>\mathbf{0}$ for each of the circuits in Figure 10.

Figure 10
\qquad ID: \qquad
11. [Alexander and Sadiku, 2009, Q7.42]

Figure 11
(a) If the switch in Figure 11 has been open for a long time and is closed at $t=0$, find $v_{o}(t)$.
(b) Suppose, instead, that the switch has been closed for a long time and is opened at t $=0$. (Note that this is not shown in the figure.) Find $v_{o}(t)$.

ID: \qquad
12. [Alexander and Sadiku, 2009, Q7.44] The switch in Figure 12 has been in position a for a long time. At $t=0$, it moves to position b. Calculate $i(t)$ for all $t>0$.

Figure 12
\qquad ID: \qquad
13. Consider the circuit in Figure 13 below. Let

Figure 13
Assume that the switch has been in position 1 during time $t<0$. Then, during time $t \geq 0$ the switch changes its position five times: at $\mathrm{t}_{1}=0 \mathrm{~ms}, \mathrm{t}_{2}=25 \mathrm{~ms}, \mathrm{t}_{3}=50 \mathrm{~ms}, \mathrm{t}_{4}=75 \mathrm{~ms}, \mathrm{t}_{5}=100$ ms .
(At time t_{1}, the switch changes to position 2. At time t_{2}, the switch changes back to position 1 . At time t_{3}, the switch changes again to position $2 \ldots$...)

Plot the voltage $v(\mathrm{t})$ for time $t>0$.
Hint: You should have $\mathrm{v}\left(\mathrm{t}_{5}\right) \approx 4.59 \mathrm{~V}$.

